IEC 61131-3

DR. TAREK A. TUTUNJI

Introduction

- The International Electrotechnical Commission (IEC) committee developed the IEC 1131 standard in an effort to standardize programmable controllers.
- Later added 6 to the number: **IEC 61131.**
- New standards IEC 61499 not followed yet.
- One of the committee's objectives was to create a common set of PLC instructions that could be used in all PLCs.

Introduction

- The IEC 61131 standard for programmable controllers consists of five parts:
 - 1. General information
 - 2. Equipment and test requirements
 - 3. Programming languages
 - 4. User guidelines
 - 5. Messaging services (communications)
- The IEC 61131 programming language standard is referred to as the IEC 61131-3 programming standard

Languages and Instructions

- The IEC 61131-3 standard defines two graphical languages two text-based languages, and one flow-chart language for use in PLC programming.
- Graphical languages
 - o ladder diagrams (LD)
 - function block diagram (FBD)
- Text-based languages
 - o instruction list (IL)
 - structured text (ST)
- Flow-chart language
 - o sequential function chart (SFC).

1. Ladder Diagrams

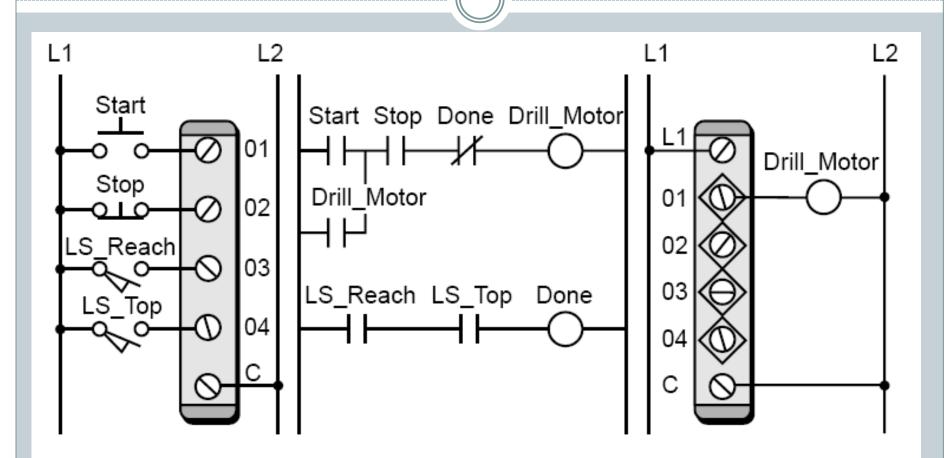
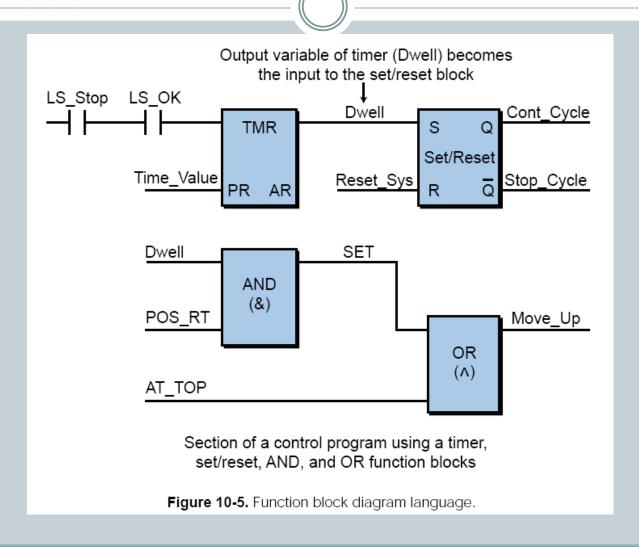



Figure 10-4. Ladder diagram representation of a PLC program.

2. Function Block Diagram

3. Instruction List

Instructions		Comments
LD	b1	(*current result:=TRUE*)
AND	b2	(*current result:=b1 AND b2*)
ANDN	b3	(*current result:=b1 AND b2 AND NOT b3*)
ST	b0	(*b0:=current result*)
Note: The current result is held in a result register. The last instruction stores the result register as the variable b0.		

Figure 10-10. Example of the machine/assembly language used in microprocessors.

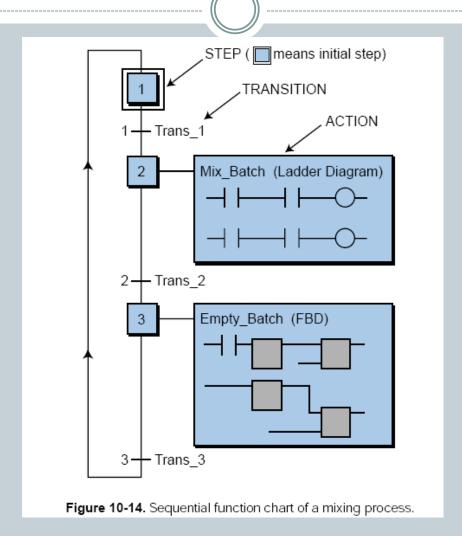
4. Structured Text

IF Manual AND NOT Alarm THEN

Level:=Manual_Level;

Mixer:=Start AND NOT Reset

ELSE_IF Other_Mode THEN


Level:=Max_Level;

ELSE Level:=(Level_Indic × 100)/Scale;

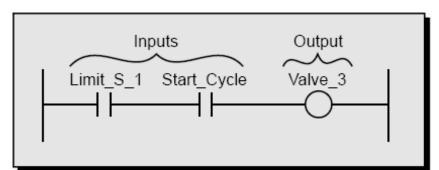
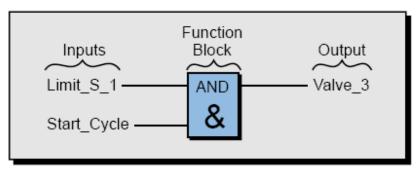
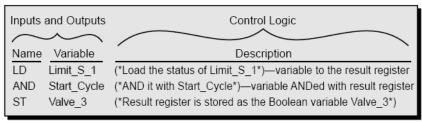

END_IF;

Figure 10-12. Example of a BASIC-like computer program.


5. Sequential Function Charts

Programming Language Example

(a) Ladder diagram (LD)


(b) Function block diagram (FBD)

```
Output Logic Expression

Valve_3:=Limit_S_1 AND Start_Cycle
or

Valve_3:=Limit_S_1 & Start_Cycle
```

(c) Structured text (ST)

(d) Instruction list (IL)

Summary

- The IEC 61131-3 standard provides PLC users with advantages in both the programming and troubleshooting of a control system.
- PLCs that support the IEC 61131 standard
 - Have better documented programs.
 - Provide immediate benefits to anyone who must troubleshoot the system or modify the program.
- For PLC users and programmers, one advantage associated with the IEC 1131-3 is the option to choose the language for the programming and implementation of the control system.